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The volatility and correlations for stocks are always of great interest to people in the finance
and statistical fields. With the accessible of intra-day data, it is important to fully utilize the given
information. In this project, we design a simple model to utilize the intraday data to model and
forecast the volatility of several symbols and correlations among them simultaneously. Specifically,
the model tries to describe the correlation among shocks and the individual stock volatility inde-
pendently. We do this by employing the realized volatility into the dynamic conditional correlation
(DCC) model [1] and call it the rGARCH-DCC model. The model achieves better volatility estima-
tion on training data than simple GARCH and the correlations among the stocks are successfully
described.
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1 Introduction

Stock volatility and correlations are of great interests to practitioners in the financial market fields.
With accurate modeling of correlations and volatility, successful hedge strategies and profitable port-
folios can be designed accordingly. Based on daily data, various models have been designed to model
volatility, such as GARCH and the various modifications to GARCH. However, daily returns estimation
for volatility could forbid the model to be accurately estimated [2, 3]. With the accessible intraday
data, people could have better estimation of volatility and the classical model, such as GARCH, per-
forms better with the help of the more accurate estimation of volatility given by the high frequency
data [3]. Another way of utilizing the realized measurement by high frequency data is to add those
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quantities explicitly into the model like the efforts shown in [4, 5, 6, 7]. People also tried to model
the high frequency data explicitly and extract the volatility estimation or prediction from those high
frequency data. The introduction and references within [8] explained this type of efforts explicitly. In
this project, we focus on the first method that we try to add the realized measurements explicitly into
the volatility modeling. The advantage of this type of models is that long horizon prediction can be
made even though the future realized measurement is not available.

Besides volatility, the correlation among symbols in a given portfolio will also play an important role
in portfolio volatility prediction. The dynamic conditional correlation (DCC) model [1] is a successful
trial in modeling the correlation among shocks for correlated symbols. A good idea of combing the
correlation modeling and realized measurement is given by [9]. However the model is complicated and
a satisfactory estimation of the model parameters require large amount of data. In this project, we
propose a simpler way. We model the correlation among shocks by the conventional DCC model but
the scale (the volatility) of returns will be modeled separately. In this way, we could add the realized
measurement to the individual volatility modeling while keeping the correlation among shocks. Also,
the individual stock volatility estimation and forecasting will not be affected by the correlation modeling
and thus the only affected estimation and prediction will be the portfolio volatility which needs the
information of covariance among returns.

In this project, we investigate our model on a realistic stock dataset with AAPL, AMZN, FB,
MSFT, TSLA and SP500 stock high frequency data in 2019. Our model fits well in AAPL, MSFT,
TSLA and SP500 but does not converge well on FB and AMZN. However the correlation among the
shocks is successfully described where our forecast of the volatility of six random portfolios consisting of
the six symbols behave well. In conclusion, although our model doest not converge well on two specific
symbols, it successfully incorporated the realized variance into the Garch model and successfully model
the correlation among shocks of the symbols.

2 Method

Given intraday data for several stock symbols, an appropriate model and a good estimate of realized
measurement should be chosen. In this section, we will introduce the concept of realized measurement
and the realized correlated volatility model we proposed in this project.

2.1 Realized Volatility

The standard stochastic model for the stock price is the generalized exponential random walk model.
As a result, the log return between time ticks follows the generalized random walk model:

d logPt = (µ− σ2

2
)dt+ σdWt. (2.1)

In this project, we use the subscript t to denote integer days of trading and fraction of it to denote
intraday time ticks. For example, if there are s ticks in one trading day, the intraday data points will
be labeled as Pt+i/s for i = 0, 1, · · · , s−1. The task of the project is to estimate daily return volatility,
and as a result, we could estimate it using the intraday data as follows∫ 1

0
σ2(t)dt ∼

s−1∑
i=0

σ2(t+ i/s)∆t ∼
s−1∑
i=0

(logPt+(i+1)/s − logPt+i/s)
2. (2.2)

In the equation, the left hand side is the volatility of the daily log return if we assume the model (2.1).
The middle part is the discrete summation approximation for the integral and the right hand side the
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data estimation for the summation. We define the right hand side summation as the realized variance
or realized volatility

RV(s)
t+1 =

s∑
i=1

r2t+i/s ≡
s∑

i=1

(logPt+i/s − logPt+(i−1)/s)
2. (2.3)

Ideally, the realized volatility will be an error free estimation of the daily volatility if s → ∞ because
the summation approaches the integral in (2.1). However, as the s becomes larger, the interval between
ticks become smaller and the non-ideal liquidity will introduce the microstructral noise into the log
returns r2t+i/s. As a result, a consistent way to choose the appropriate s is needed to deal with the
"bias variance" trade off. We follow the recipe introduced in [10] and the exact procedure on real data
will be shown in detail in the experiment section.

2.2 The model

In order to estimate risk, design portfolio and trading strategy, a good forecast of both volatility and
correlation among the symbols of interest is needed. Univariate model describes volatility successfully
and the correlation among the shocks could be estimated by the standardized shocks. This estimation
assumes constant correlation among shocks. However, the correlation among the symbols may also
evolve with time and a constant estimation of correlation matrix among the symbols will not give
satisfactory results, especially when the time span is long and the correlation matrix oscillates a lot. The
way we handle the correlation is borrowed from DCC model [1]. The way we incorporate the realized
measurement is that we model the individual realized volatility instead of the realized covariance among
the symbols. Moreover, We model the realized volatility in the view that it is an observation of the
hidden true volatility with random noise.

Specifically, we let rit to denote the log return logP i
t − logP i

t−1 for stock i, σi
t to be the conditional

variance of stock i, zit to be the shock for stock i and Ct be the conditional correlation matrix among
zit. The model can be described as

rit = µi + σi
tz

i
t (2.4)

log
(
RVi

t

)
= ξi + ϕi log

(
σi
t

)2
+ τ i1z

i
t + τ i2((z

i
t)

2 − 1) + uit (2.5)

(σi
t+1)

2 = ωi + βi(σi
t)

2 + γiRVi
t (2.6)

Ct = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (2.7)

Qt+1 = S(1− a− b) + a(ztz
T
t ) + bQt (2.8)

zt ∼ N (0, Ct) (2.9)
ut ∼ N (0,Σu). (2.10)

The first equation describes the return using the volatility scale and the constant expected mean µi.
The second equation describes the "measurement" mechanics: the realized variance depends on the
hidden true volatility and the shocks as well as a measurement noise ut. These ut have zero pairwise
correlation but have different scales for different stock i and thus Σu is a diagonal matrix. The log
transformation on the measurement equation is to make the noise ut similar to Normal distribution.
The third equation is the updating equation for the volatility σi

t. Notice, the usual GARCH model
uses return squared to update the volatility but here, we use the more accurate estimate, the realized
variance. The Qt is the sample estimate of the conditional covariance matrix of zt and the update
equation (2.8) is mean revert to the sample estimation S. The (2.7) ensures that the covariance matrix
for the shocks is normalized.
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2.3 Parameter Estimation

The model could be estimated using maximum log-likelihood. Note the measurement equation does
not couple with the dynamic part and thus we should focus on the dynmaic part first and after get
good estimate of σt, we could proceed to get the parameters in the measurement equation. The log
likelihood of the returns ri can be calculated from the probability density as

p(r1, . . . , rT |RV, θ) = p(rT |FT−1, θ)p(rT−1|FT−2, θ) · · · p(r1|F0, θ)p(σ0, RV0). (2.11)

We first focus on the conditional likelihood estimation, where we neglect the last factor for the initial-
ization. Given Ft−1, rt follows the multivariate distribution. If we let the Dt be the diagonal matrix
with diagonal terms equal to σi

t, then the log likelihood of rt|Ft−1 becomes

log p(rt|Ft−1, θ) = −1

2

{
log |DtCtDt|+ (rt − µ)†D−1

t C−1
t D−1

t (rt − µ)
}

= −1

2

{(
log |Dt|2 + (rt − µ)†D−2

t (rt − µ)
)
+
(
logCt + z†tC

−1
t zt − z†t zt

)} (2.12)

where we used the fact that Dt(rt − µ) = zt. We also dropped the constant term −1
2n log(2π) in the

log likelihood. We should notice that the log likelihood only assumes a multivariate normal among
rt with covariance matrix DtCtDt and mean µ. This makes it possible to compare the log likelihood
directly with that of other Guassian family models to find a better model because they assume the
same conditional distribution for rt.

The structure of the log likelihood shows that

L = −1

2

T∑
t=1

{
n∑

i=1

2 log σi
t +

(rit − µi)2

(σi
t)

2

}
− 1

2

T∑
t=1

{
logCt + z†tC

−1
t zt − z†t zt

}
. (2.13)

The first part is the usual GARCH model part and the second part is the dynamical correlation part.
The strategy of the optimization would be that we first optimize the first part and get the standardized
shocks zt and optimize the second part. It should be noticed that the covariance matrix H = DtCtDt

has diagonal terms as

Hii =
∑
j,k

(Dt)ij(Ct)jk(Dt)ki = (Dt)ii(Ct)ii(Dt)ii = (Dt)
2
ii. (2.14)

The optimization procedure can be viewed as we first estimate the diagonal terms in the covariance
matrix Ht and then estimate the non-diagonal terms in Ht.

Although, the first procedure is almost the usual GARCH procedure, the added realized volatility
RVt cannot be put into the standard library of GARCH. As a result, we would use the iterative
algorithm to solve the problem. It is beneficial to have a closed form gradient. Given the parameters
µi, ω, β, γ, σi

0 and the (σi
t)

2 corresponding to the parameters, we could get the gradient for the
parameters as

∂L

∂ωi
= −1

2

T∑
t=1

(
1

(σi
t)

2
− (rit − µi)2

(σi
t)

4

)
∂(σi

t)
2

∂ωi

∂L

∂βi
= −1

2

T∑
t=1

(
1

(σi
t)

2
− (rit − µi)2

(σi
t)

4

)
∂(σi

t)
2

∂βi

∂L

∂γi
= −1

2

T∑
t=1

(
1

(σi
t)

2
− (rit − µi)2

(σi
t)

4

)
∂(σi

t)
2

∂γi

(2.15)
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The derivative of σ2
t on , ω, β, γ can be calculated recursively from the t = 0. For example, the derivative

with respect to β is:

∂(σi
t)

2

∂βi
= (σi

t−1)
2 + βi∂(σ

i
t−1)

2

∂βi
with

∂(σi
1)

2

∂βi
= (σi

0)
2. (2.16)

The update of µi could be carried out by the exact solution of ∂µL = 0 which gives

µi =

(
T∑
t=1

1

(σi
t)

2

)−1 T∑
t=1

rit
(σi

t)
2
. (2.17)

Thus, for given parameters, we would first update µi and calculate the derivative for ω, β, γ and then
after the gradient descent update, we update µi again and do the iteration until convergence.

The correlation part has similar algorithm for optimization. For simplicity, since (2.8) shows the
mean reverting property, we could fix S as the sample covariance matrix and do not optimize over it.
The exact derivative for the parameters a and b can be found in the appendix.

Figure 1: The average of daily realized volatility from 2019-01-02 to 2019-10-31 is calculated for various
tick spacing. The figure plots the realized volatility versus the tick spacing s with s ranges from 1 to
100.

3 Experiment

The data set we want to test the model on is the stock prices for APPL, AMZN, FB, MSFT, TSLA
and the index of SP500. Since the stocks are all in technology fields and most of them plays an role in
SP500, we would expect non-trivial correlations are among the symbols. The data spans from January
2nd, 2019 to December 31st, 2019 and the data are all intraday data with time ticks as 1 minute [11].
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The data contains open, close, highest and lowest price at each one minute interval. Also, the stock
data contains information for after hours trading. We split the data into training and validation data.
The training data spans from January 2nd to November 29th and the remaining is the validation data.

3.1 Construct Realized Volatility

The realized volatility should be constructed first. For simplicity, we would only use close price to
calculate realized volatility. As discussed in section 2.1, the time intervals to calculate the volatility
should be chosen carefully to approximate the hidden truth and also eliminate microstructral noises.
We follow the following recipe: we first select a spacing s minutes from s = 1 to s = 100. Then we
calculate the realized variance RVs for various days and take the average. Finally, we plot the average
realized variance with respect to s. We would find the smallest s such that the RVs stabilizes after s.

In this data, for each spacing, we calculated the realized variance for all trading dates from 2019-
01-02 to 2019-10-31 in the training set. In the Figure. 1, the average realized variance is plotted versus
the spacing s. The selected spacing for each symbol is listed in the Table. 1. With fixed spacing s, in
order to eliminate the noise, we choose different starting point to calculate the realized variance. Then
we take average of the calculated realized variance from different starting point for each trading day.
Specifically, the final realized variance for the chosen s is calculated as

RVt+1 =
1

s

s−1∑
j=0

N/s∑
i=1

(
logPt+(is+j)δt − logPt+((i−1)s+j)δt

)2 (3.1)

where j is the various starting point and N is the number of ticks for each day. δt is the time difference
between each tick it is one minute in our case. It should be understood that the divide N/s takes the
integer part of the dividing result.

symbol AAPL AMZN FB MSFT TSLA SP500
s 40 30 10 10 40 10

Table 1: The spacing s chosen for the realized variance for each symbol

3.2 Model Fits and Results

The model is optimized using "SLSQP" algorithm which is an approximate second order iterative
optimization method. It considers the bounds and constraints for the parameters. Since an initial guess
is needed for the iterative method, we try multiple starting points for the optimization and choose the
one with the maximum log likelihood. In order to estimate the variance of the parameter estimation,
we use the idea of bootstrapping. Since we only have one time series observation, the bootstrapping
we do is using sliding window. Specifically, we move a window of width L with L less than the length
of the sequence T . For each window, we fit a model and collect the estimated parameters and calculate
the variance from this data collection. This assumes that the model parameters are pretty stable within
a certain period.

The fitted parameters are given in the table. It should be noted that for TSLA, the coefficient β is
zero. This means that the volatility depends highly on the last realized volatility instead of the hidden
true volatility which indicates that the response of the stock price is sensitive to shocks. Another
explanation may be that the realized volatility can the hidden volatility σ2

t−1 have strong correlation
and the bound γ + β < 1 makes the optimization more like the Lasso regression and the coefficient γ
is set automatically to zero by the procedure. The coefficient for FB shows that the γ is just zero and
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thus the estimation for the volatility of FB will be an exponential decay from initial σ0 to the long
term volatility estimated. The oscillation of realized volatility does not affect the σ2

t estimation. This
indicates that the conditional volatility of FB does not depend on the behaviour of the market. This
may be due to the some numerical instability or data is not fully cleaned. The model fits are thus not
successful for FB. The mean estimation for log returns shows the log returns have significant mean for
all symbols except for AMZN. This conincides the fact the stocks increase a lot for all symbols except
for AMZN.

For the measurement equation, the interesting feature we see is that the τ1 coefficient is zero for
all stock. Also, the error of the estimation is small compared to the value. This indicates the fact that
when the return is decreasing, the volatility tends to be large. Besides, τ2 is statistically significant
with positive value. This shows that the realized volatility tends to increase with large oscillation in
the market. In addition, the power coefficient ϕ is around 1 for all stocks except FB. This shows that
our assumption about that realized variance is a measurement of underlying volatility. Also, ξ seems
not statistically significant since the estimated standard error are larger than the estimation. This
indicates that the observation of realized variance will be a non-biased estimator of the underlying
volatility. This coincides with our measurement assumption.

Realized Garch Parameters

AAPL AMZN FB MSFT TSLA SP500
ω(10−5) 3.52 1.31 1.18 1.10 24.1 0.30

(0.20) (1.50) (5.60) (1.60) (5.20) (0.07)
β 0.31 0.80 0.93 0.67 0.00 0.42

(0.03) (0.18) (0.35) (0.21) (0.00) (0.08)
γ 0.50 0.11 0.00 0.25 0.76 0.50

(0.05) (0.10) (0.04) (0.13) (0.13) (0.11)
µ(10−4) 10.3 0.49 2.46 1.75 4.50 3.87

(0.75) (1.95) (1.49) (0.94) (1.76) (0.61)

Measurement Parameters

AAPL AMZN FB MSFT TSLA SP500
ξ 0.22 7.07 153 2.08 -1.13 -0.79

(0.49) (3.25) (518) (3.53) (1.08) (0.98)
ϕ 1.08 1.85 18.8 1.26 0.93 0.94

(0.05) (0.36) (60.2) (0.38) (0.14) (0.10)
τ1 -0.10 -0.09 -0.11 -0.07 -0.03 -0.17

(0.01) (0.03) (0.01) (0.01) (0.01) (0.02)
τ2 0.24 0.18 0.13 0.16 0.15 0.15

(0.00) (0.01) (0.00) (0.01) (0.00) (0.01)
σu 0.65 0.58 0.49 0.44 0.57 0.55

(0.01) (0.01) (0.02) (0.01) (0.00) (0.01)

DCC Parameters

Estimate Err
a 0.3095 0.0053
b 0.5918 0.0156

Table 2: Parameter Estimation for the rGARCH-DCC model. The boots-trapping estimated standard
deviation for each parameter is listed in the parenthesis.

3.3 Prediction

Although the fitted model does not do well for FB, we still could do the prediction for realized variance
or volatility on the last month from December 1st to December 31st in the test dataset. This could
validate our model for the individual prediction. For the correlation model, we could construct various
portfolio with different portions of the stocks on the test. Then, we could see how the prediction of
volatility of the portfolio behaves on the test data.
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In order to construct prediction confidence interval, we run the prediction multiple times and take
the 0.025, 0.50, 0.975 quantiles on the predicted realized variance and volatility. We plot the fitted σ2

t

and prediction in Figure 2. In the plot, the orange line is the fitted volatility σ2
t and the blue line is

the underlying true realized variance. The gray shaded region is the 95% confidence interval for the
predicted RVs. In the plot, it is clear that except FB, the stocks realized volatility after December 1st
is within the confidence interval. This indicates a good sign of prediction. Besides, For AAPL, MSFT
and SP500, the conditional volatility follows the realized variance closely which indicates the model is
sensitive to shocks. On the other hand, AMZN and TSLA has rigidity that is not observed in other
symbols. This is shown in the plot that the conditional variance does not drop to low value when the
realized variance does.

We can also validate our correlation estimation calculating some random portfolio volatilities. Since
the log returns are small in magnitude, the portforlio log return can be simply the weighted average
of the components portfolio. In the figure, we plot six random portfolios. In the plot, the orange line
is the fitted σ2 for the portfolio and the shaded area is the 97.5% and 2.5% quantiles of the predicted
σ2 of the portfolio. The blue line is the portfolio log return squared r2. It is shown in the figure, the
fitted conditional σ2 follows trend of the return squared. Also, the log return squared in December lies
in the shaded region. This indicates a good estimation of the correlation matrix among the symbols.

Figure 2: The model behaviour on the training and test data set. The fitted σ2
t on the training set is

plotted as the orange line and the realized variance is plotted as the blue line. The gray area is 95%

confidence interval for the last month realized variance.
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Figure 3: The model behaviour on 6 random portfolios with random weights. The fitted σ2
t on the

training set is plotted as the orange line and the portfolio return squared r2 is plotted as the blue line.
The gray area is 95% confidence interval for the last month σ2

t forecast.

4 Discussion

The realized Garch DCC model we introduced in this project is a simple model that can captures
the correlation among the shocks and incorporate high frequency realized information. The fit of the
model needs more careful algorithm since our fit for Facebook does not give good result. Besides that,
there are some points worth to note.

First, we introduce the log transformation in the measurement equation (2.5). If we simply use the
linear measurement equation, the long horizon prediction will have mean reverting behaviour. This is
because E[RVt] = ξ+ϕσ̂2

t is the best prediction for future points and (σ̂)2 is the prediction of σ2
t . The

Garch equation would become
σ̂2
t+1 = ω + γξ + (β + γϕ)σ̂2

t (4.1)

and this is mean reverting given β + γϕ < 1 and this puts extra constrains on the model. In our case,
we use log transformation. This transformation makes the residual of the measurement equation to
be more like normal and makes the behaviour of forecasting to be more complicated and the forecast
require the use of Monte Carlo method.

Second, we consider a simple mean function in our model. The mean function could in principle
have some interactions among the symbols. However, we did not consider this possibility explicitly. In
our model, the correlation among the symbols come from shocks zt. If we introduce transformation that
diagonalize the covariance among zi, we would also dependence of rit on other rjt for j ̸= i. Thus, the
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model assumes concurrent dependence implicitly. However, the σi
t still does not have any interaction

among the symbols. The only effects of the correlation will appear on the quantities that relates to
the covariance matrix of the returns, such as the portfolio volatility.

Third, in estimating the model, we employed the two step estimation method where we first estimate
the Garch part and then the measurement equation parameters. Although, this method gives consistent
estimate of the parameters, a more accurate way of estimation is helpful. Also, if the parameters are
estimated together, the linear measurement equation can be estimated with the stationary constraints
β + γϕ < 1. In our case, the log transformation of the measurement equation removes the constraint
and gives us freedom to do the two step estimation.

5 Conclusion

In the project, we constructed a simple correlated Garch model that can take into account of high
frequency information. In particular, we constructed realized volatility from intraday data and incor-
porate it into each stock. In the model, we adopted the measurement view of realized variance and
designed a measurement equation for realized variance to enable long horizon prediction. Besides, to
preserve the assumption that the measurement is immersed in Gaussian noise and to introduce inter-
esting forecast behaviour, we introduced the log transformation in the measurement equation. Another
feature of the model is that the forecast and estimation of conditional variance for each stock is the
same as the uncorrelated realized Garch model. We tested our model on the real data consists of
AAPL, AMZN, FB, MSFT, TSLA and SP500. The results for FB and AMZN are not satisfactory but
for other four symbols the model do pretty good estimation of conditional volatility. Further study is
needed to find the reason for the estimation failure on FB and AMZN. However, overall, the realized
Garch-DCC model is a simple enough model that could do satisfactory forecast.
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Appendix
We first show our calculation of the derivative of the likelihood function for the DCC model. This is needed in
the parameter estimation.

First the part of log likelihood that involves the parameters of DCC is

f = log |C|+ zTC−1z

and the parameters a and b are hidden in the calculation for C. We use chain rule to find the derivative for a
and b

df

da
=

df

dCij

dCij

dQkl

dQkl

da
.

In below calculation we do not employ Einstein summation notation since there are a lot of repeated indices
that should not be summed. The first term is

df

dCij
= C−1

ij −
∑
n,m

znC
−1
ni C

−1
jmzm

Then the second second term in the chain rule is

dCij

dQkl
=

d

dQkl
(

1√
Qii

Qij
1√
Qjj

)

= −1

2

1

Q
3/2
ii

δikδilQij
1√
Qjj

+
1√
Qii

1√
Qjj

δikδjl −
1

2

1√
Qii

Qij
1

Q
3/2
jj

δjkδjl

= −1

2

Cij

Qii
δikδlk − 1

2

Cij

Qjj
δjkδkl +

1√
Qii

1√
Qjj

δikδjl

Thus combining the first two terms gives

df

dQkl

=
∑
i,j

(
C−1

ij − znC
−1
ni C

−1
jmzm

)(
−1

2

Cij

Qii
δikδlk − 1

2

Cij

Qjj
δjkδkl +

1√
Qii

1√
Qjj

δikδjl

)

= −1

2

1

Qkk
C−1

kj Ckjδlk − 1

2

1

Qkk
C−1

ik Cikδkl +
C−1

kl√
Qkk

√
Qll

− 1√
Qkk

1√
Qll

znC
−1
nk C

−1
lm zn

+
1

2
znC

−1
nk C

−1
jmzm

Ckj

Qkk
δlk +

1

2
znC

−1
ni C

−1
kmzm

Cik

Qkk
δkl

= − 1

Qkk
δlk +

C−1
kl√

Qkk

√
Qll

− 1√
Qkk

1√
Qll

znC
−1
nk C

−1
lm zn +

1

2

1

Qkk
znC

−1
nk zkδlk +

1

2

1

Qkk
zkC

−1
kmzmδlk

=
1

Qkk
δlk

(
−1 +

∑
n

znC
−1
nk zk

)
+Q−1

kl −
∑
n,m

1√
Qkk

1√
Qll

znC
−1
nk C

−1
lm zm
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The last term in the chain rule
dQkl

da
= zkzl − Skl + b

dQkl,t−1

da
which is a recursive equation and could be calculated easily in computer. As a result the derivative to a is a
simple product of the above two equations.

Similarly, we could get the derivative with b by only replaceing the last term in the chain rule equation.
The derivative of Qt on b is

dQt

db
= −S +Qt + b

dQt−1

db
and it is a recursive equation with the base case

dQ1

db
= −S +Q0 + 0 = Q0 − S

If we let Q0 be the sample covariance matrix, the base case is dQ1

db = 0. As a result, the derivative is

df

db
=

{
1

Qkk
δlk
(
−1 + znC

−1
nk zk

)
+Q−1

kl − 1√
Qkk

1√
Qll

znC
−1
nk C

−1
lm zm

}
dQkl

db

=
1

Qkk

dQkk

db
(−1 + znC

−1
nk zk) +Q−1

kl

dQkl

db
− 1√

Qkk

1√
Qll

znC
−1
nk

dQkl

db
C−1

lm zm

= − 1

Qkk

dQkk

db
+ znC

−1
nk

zk
Qkk

dQkk

db
+Q−1

kl

dQkl

db
− 1√

Qkk

1√
Qll

znC
−1
nk

dQkl

db
C−1

lm zm

= − 1

Qkk

dQkk

db
+ zn

√
QnnQ

−1
nk

√
Qkkzk

dQkk

db

1

Qkk
+Q−1

kl

dQkl

db

− zn
√
QnnQ

−1
nk

dQkl

db
Q−1

lm

√
Qmmzm

= − 1

Qkk

dQkk

db
+ z′nQ

−1
nk z

′
k

dQkk

db

1

Qkk
+Q−1

kl

dQkl

db
− z′nQ

−1
nk

dQkl

db
Q−1

lmz′m

The second part of the appendix the diagnositc plot of the fitted residuals zt and ut in the Garch and
measurement equation respectively. The plot shows that zt and ut roughly follows normal distribution. This
shows that the estimation preserves the assumption.
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